Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Hum Brain Mapp ; 44(10): 3998-4010, 2023 07.
Artículo en Inglés | MEDLINE | ID: covidwho-2319814

RESUMEN

There has been growing attention on the effect of COVID-19 on white-matter microstructure, especially among those that self-isolated after being infected. There is also immense scientific interest and potential clinical utility to evaluate the sensitivity of single-shell diffusion magnetic resonance imaging (MRI) methods for detecting such effects. In this work, the performances of three single-shell-compatible diffusion MRI modeling methods are compared for detecting the effect of COVID-19, including diffusion-tensor imaging, diffusion-tensor decomposition of orthogonal moments and correlated diffusion imaging. Imaging was performed on self-isolated patients at the study initiation and 3-month follow-up, along with age- and sex-matched controls. We demonstrate through simulations and experimental data that correlated diffusion imaging is associated with far greater sensitivity, being the only one of the three single-shell methods to demonstrate COVID-19-related brain effects. Results suggest less restricted diffusion in the frontal lobe in COVID-19 patients, but also more restricted diffusion in the cerebellar white matter, in agreement with several existing studies highlighting the vulnerability of the cerebellum to COVID-19 infection. These results, taken together with the simulation results, suggest that a significant proportion of COVID-19 related white-matter microstructural pathology manifests as a change in tissue diffusivity. Interestingly, different b-values also confer different sensitivities to the effects. No significant difference was observed in patients at the 3-month follow-up, likely due to the limited size of the follow-up cohort. To summarize, correlated diffusion imaging is shown to be a viable single-shell diffusion analysis approach that allows us to uncover opposing patterns of diffusion changes in the frontal and cerebellar regions of COVID-19 patients, suggesting the two regions react differently to viral infection.


Asunto(s)
COVID-19 , Sustancia Blanca , Humanos , Estudios de Factibilidad , COVID-19/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Imagen de Difusión Tensora/métodos , Imagen de Difusión por Resonancia Magnética/métodos
2.
Front Neurol ; 14: 1136408, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2293503

RESUMEN

Introduction: The long-term impact of COVID-19 on brain function remains poorly understood, despite growing concern surrounding post-acute COVID-19 syndrome (PACS). The goal of this cross-sectional, observational study was to determine whether there are significant alterations in resting brain function among non-hospitalized individuals with PACS, compared to symptomatic individuals with non-COVID infection. Methods: Data were collected for 51 individuals who tested positive for COVID-19 (mean age 41±12 yrs., 34 female) and 15 controls who had cold and flu-like symptoms but tested negative for COVID-19 (mean age 41±14 yrs., 9 female), with both groups assessed an average of 4-5 months after COVID testing. None of the participants had prior neurologic, psychiatric, or cardiovascular illness. Resting brain function was assessed via functional magnetic resonance imaging (fMRI), and self-reported symptoms were recorded. Results: Individuals with COVID-19 had lower temporal and subcortical functional connectivity relative to controls. A greater number of ongoing post-COVID symptoms was also associated with altered functional connectivity between temporal, parietal, occipital and subcortical regions. Discussion: These results provide preliminary evidence that patterns of functional connectivity distinguish PACS from non-COVID infection and correlate with the severity of clinical outcome, providing novel insights into this highly prevalent disorder.

3.
J Magn Reson Imaging ; 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2148350

RESUMEN

BACKGROUND: Neurological symptoms associated with coronavirus disease 2019 (COVID-19), such as fatigue and smell/taste changes, persist beyond infection. However, little is known of brain physiology in the post-COVID-19 timeframe. PURPOSE: To determine whether adults who experienced flu-like symptoms due to COVID-19 would exhibit cerebral blood flow (CBF) alterations in the weeks/months beyond infection, relative to controls who experienced flu-like symptoms but tested negative for COVID-19. STUDY TYPE: Prospective observational. POPULATION: A total of 39 adults who previously self-isolated at home due to COVID-19 (41.9 ± 12.6 years of age, 59% female, 116.5 ± 62.2 days since positive diagnosis) and 11 controls who experienced flu-like symptoms but had a negative COVID-19 diagnosis (41.5 ± 13.4 years of age, 55% female, 112.1 ± 59.5 since negative diagnosis). FIELD STRENGTH AND SEQUENCES: A 3.0 T; T1-weighted magnetization-prepared rapid gradient and echo-planar turbo gradient-spin echo arterial spin labeling sequences. ASSESSMENT: Arterial spin labeling was used to estimate CBF. A self-reported questionnaire assessed symptoms, including ongoing fatigue. CBF was compared between COVID-19 and control groups and between those with (n = 11) and without self-reported ongoing fatigue (n = 28) within the COVID-19 group. STATISTICAL TESTS: Between-group and within-group comparisons of CBF were performed in a voxel-wise manner, controlling for age and sex, at a family-wise error rate of 0.05. RESULTS: Relative to controls, the COVID-19 group exhibited significantly decreased CBF in subcortical regions including the thalamus, orbitofrontal cortex, and basal ganglia (maximum cluster size = 6012 voxels and maximum t-statistic = 5.21). Within the COVID-19 group, significant CBF differences in occipital and parietal regions were observed between those with and without self-reported on-going fatigue. DATA CONCLUSION: These cross-sectional data revealed regional CBF decreases in the COVID-19 group, suggesting the relevance of brain physiology in the post-COVID-19 timeframe. This research may help elucidate the heterogeneous symptoms of the post-COVID-19 condition. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 3.

4.
CMAJ Open ; 9(4): E1114-E1119, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1547694

RESUMEN

BACKGROUND: The detailed extent of neuroinvasion or deleterious brain changes resulting from COVID-19 and their time courses remain to be determined in relation to "long-haul" COVID-19 symptoms. Our objective is to determine whether there are alterations in functional brain imaging measures among people with COVID-19 after hospital discharge or self-isolation. METHODS: This paper describes a protocol for NeuroCOVID-19, a longitudinal observational study of adults aged 20-75 years at Sunnybrook Health Sciences Centre in Toronto, Ontario, that began in April 2020. We aim to recruit 240 adults, 60 per group: people who contracted COVID-19 and were admitted to hospital (group 1), people who contracted COVID-19 and self-isolated (group 2), people who experienced influenza-like symptoms at acute presentation but tested negative for COVID-19 and self-isolated (group 3, control) and healthy people (group 4, control). Participants are excluded based on premorbid neurologic or severe psychiatric illness, unstable cardiovascular disease, and magnetic resonance imaging (MRI) contraindications. Initial and 3-month follow-up assessments include multiparametric brain MRI and electroencephalography. Sensation and cognition are assessed alongside neuropsychiatric assessments and symptom self-reports. We will test the data from the initial and follow-up assessments for group differences based on 3 outcome measures: MRI cerebral blood flow, MRI resting state fractional amplitude of low-frequency fluctuation and electroencephalography spectral power. INTERPRETATION: If neurophysiologic alterations are detected in the COVID-19 groups in our NeuroCOVID-19 study, this information could inform future research regarding interventions for long-haul COVID-19. The study results will be disseminated to scientists, clinicians and COVID-19 survivors, as well as the public and private sectors to provide context on how brain measures relate to lingering symptoms.


Asunto(s)
Encéfalo/fisiopatología , COVID-19/complicaciones , Alta del Paciente , Adulto , Anciano , Encéfalo/diagnóstico por imagen , COVID-19/diagnóstico por imagen , COVID-19/fisiopatología , Electroencefalografía/métodos , Femenino , Hospitalización , Hospitales , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Ontario , Aislamiento de Pacientes/métodos , SARS-CoV-2 , Adulto Joven , Síndrome Post Agudo de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA